
1

Strengthening diversification defenses by means of a
non-readable code segment

Sebastian Österlund
Department of Computer Science

Vrije Universiteit, Amsterdam, Netherlands
Supervised By: H. Bos & C. Giuffrida

Abstract—In this paper we present a new defense against Just-
In-Time return-oriented-programming attacks. By making pro-
gram code non-readable, the assembly of Just-In-Time gadgets by
scanning the memory is effectively blocked. Using segmentation
on Intel x86 hardware, the implementation of execute-only code
can be achieved. We discuss two different ways of implementing
such a defense for 32-bit Intel architecture: one for position
dependent executables, and one for position independent executa-
bles. The first implementation works by splitting the address-
space into two mirrored segments. The second implementation
creates an execute-only memory-section at the top of the address-
space, making it possible to still use the whole address-space.
By relying on hardware segmentation the run-time performance
overhead of these defenses is minimal.

Keywords—ROP, segmentation, XnR, buffer overflow, memory
disclosure.

I. INTRODUCTION

In recent years traditional remote code execution exploits,
making use of buffer-overflows, have become obsolete due
to the introduction of data execution prevention (DEP) tech-
niques. Techniques such as Intel NX [1] enforce a policy
of making writable data non-executable. On the other hand,
attacks such as return-to-libc and other Return-Oriented-
Programming attacks overcome such techniques by executing
(snippets of) existing code which necessarily has to be exe-
cutable [2], creating a so-called gadget chain. An overview of
how these attacks work will be given in Sec. II.

A common defense against ROP-exploits is Address-space
layout randomization (ASLR). ASLR mitigates many of these
attacks by randomizing the layout of a program loaded in
memory. However, there are several known weaknesses in the
currently used ASLR implementations [3].

For example a leaked pointer disclosure may give away
the base-address of executable code (e.g. the base address of
libc), thus making it possible to simply add an offset in the
pre-assembled gadget chain. Fine-grained ASLR makes this
harder [4][5], since the code is split up into smaller blocks
and shuffled around. It has however been shown in [6] that,
thanks to memory disclosure vulnerabilities, these gadgets can
be assembled for a specific target by scanning the memory
for code snippets. By creating such a just-in-time assembled
exploit, the defense provided by ASLR is circumvented.

The contribution made by this paper is a segmentation-based
defense against memory disclosure attacks. By relying on

hardware segmentation, this approach should theoretically have
no run-time performance overhead for Intel x86 architecture,
once it has been set up. Both position dependent executables
and position independent executables are covered. Furthermore
an approach to implement a similar defense on x86_64 using
the new MPX [7] instructions is presented. The defense
mechanism we present in this paper is of interest, mainly,
for use in security of network connected applications (such
as servers or web-browsers), since these applications are often
the main targets of remote code execution exploits.

II. RETURN-ORIENTED-PROGRAMMING ATTACKS

Remote code execution by means of buffer overflows has
been a problem for a long time. In this section we give an
overview of such remote code execution exploits.

By overwriting a function return address, code at an arbitrary
location can be executed, thereby making remote code exe-
cution possible. The following code demonstrates a common
exploitable bug in programs:

void v u l n e r a b l e _ f u n c t i o n (char ∗ u s e r _ i n p u t)
{

char b u f f e r [1 2] ;
s t r c p y (b u f f e r , u s e r _ i n p u t) ;

}

void hacked ()
{

p r i n t f (" I have been hacked ! ! ! ! ") ;
}

i n t main (i n t argc , char∗ a rgv [])
{

v u l n e r a b l e _ f u n c t i o n (a rgv [1]) ;
re turn 0 ;

}

In the example above, the length of the string user_input is
unknown. Since strcpy copies characters until it reaches a end-
of-string character (i.e. NULL) 1, the program may overwrite
memory beyond the buffer.

Using this buffer overflow, an attacker may overwrite the
return address of the function vulnerable_function. By pointing

1Some compilers actually do object-size checking on strcpy, preventing
some common buffer-overflows.

2

...

attacker inserted value return address

Local variables

char *buffer

vulnerable_function()

main()

...

Fig. 1: Example of buffer overflow attack. strcpy overwrites
the return address by an address entered by the attacker,
executing code at a location chosen by the attacker.

this address to another function the execution of the program
may be altered (See Fig. 2). Furthermore, an attacker may put
arbitrary code into memory and point the return address to the
entered code.

Luckily, data execution prevention techniques such as W ⊕
X2, making executable data non-writable, prohibit the exe-
cution of malicious code entered in this manner. When the
processor tries to execute data on a page that is marked NX
(non-executable) the processor throws an exception, terminat-
ing the offending program.

...

arg to system() Fill in: /bin/sh

return address of system()

address of libc system() function return address

Local variables

char *buffer

vulnerable_function()

main()

...

Fig. 2: Example return-to-libc attack. If the process runs as
root, an attacker may gain access to a shell with root privileges.
When the command system("/bin/sh") is executed the attacker
has gained root access to the system.

Despite this protection it is still possible for an attacker to
execute existing code. Since program code necessarily needs
to be executable (why else call it a program...), it is possible
to execute existing functions by placing its address (or any

2Introduced by OpenBSD in 2003 (http://marc.info/?l=openbsd-
miscm=105056000801065)

point in a procedure) in the return address. Usually this would
not be critical, since the existing code in a program is limited
in scope. However, an attacker may also choose to execute
code from a library, giving the attacker much more available
executable code to work with.

It is possible to chain together library functions by putting
the address of the next function in the return address of the
called function. By assembling such a chain, a so-called gadget
chain is created. Furthermore, it has been shown in [2] that the
GNU C library is Turing complete, thus any arbitrary program
can be constructed by chaining together functions from libc.

III. NON-READABLE CODE

When gadget chains are assembled, the memory is scanned
for pieces of executable code that can be "glued" together.
For example an attacker may scan the memory for a POP-
instruction followed by a return. By scanning the memory
for such gadgets, a very targeted attack can be assembled
Just-in-time, without knowing the exact location of executable
code. If it, however, was prohibited to scan the memory, these
attacks would be rendered useless. By enforcing a policy
of making executable code non-readable (the abbreviation
XnR will henceforth be used for this primitive) it becomes
impossible to scan the memory for such gadgets. XnR together
with ASLR, would make it very hard (or rather impossible)
to determine where certain snippets of code are located, thus
creating a strong defense against JIT-ROP attacks.

Sadly, implementing such a policy is not achieved by just
marking executable pages non-readable. For Intel x86, memory
that is executable implies that it is readable, thus XnR has to
be implemented in another way. The obvious approach would
be to emulate execute-only functionality on a per-page basis
in software. Such an implementation is presented in [8] and
will be discussed further in Sec. IX. In short: the problem with
this approach is that software emulation adds some overhead,
which is not necessarily required. In the next section a novel
approach of achieving non-readable text without software-
based page access emulation is presented.

IV. SEGMENTATION-BASED ACCESS POLICY

A. Segmentation on Intel x86
For the 8086 processor, Intel introduced segmentation. This

memory-translation feature allows memory to be split into
separate disjoint logical entities called segments. Segmentation
allows programmers to create programs consisting of multiple
segments located at different addresses in physical memory,
without having to worry about at which address in physical
memory certain parts of a program is loaded. The historical
idea behind segmentation was to allow programmers to split
the program into logically structured separated parts. There
are, thus, two kinds of segment types: data and code. Data
segments can only be used for reading/ writing memory, while
code segments allow the memory-contents to be executed. For
a more comprehensive description of segmentation see chapter
3.7 of [9].

When a valid segment descriptor has been loaded into a
segment register, all access to memory is relative to the base

3

Fig. 3: The layout of a standard ELF program in Linux
with a flat address-space. The Code Segment (CS) and Data
Segment(DS) both cover the same area, namely 0x00000000
- 0xffffffff

...

stack

mmap region

heap (malloc

.bss

.data

.text

Code Segment (CS)
Data Segment (DS)

...

address of the segment. If a memory address larger than
the offset between the segment base and limit is loaded, the
processor throws a general protection fault. Depending on
which instruction is executed, the segment used for memory-
translation differs. There are two different kinds of memory
access patterns on Intel x86:

1) Instruction fetch. When a program instruction is
fetched for execution by the processor, e.g. by means
of a JMP. The CS (Code Selector) register is used to
determine in which segment to access the address.

2) Data load. When a memory address is loaded through
an instruction such as MOV. For these accesses the DS
(Data Selector) register is used to determine in which
segment to access the address. Normally, when using a
flat memory model, it is also valid to load executable
code using these instructions.

B. Process layout

In Linux, the virtual address space of a process is split up in
different memory areas. Within each memory area, the access
policy for the pages is the same. For example the data of a
program is is put in one (writable) memory area, while the
code is loaded into an executable memory area. For a standard
ELF binary on Linux the layout of a loaded process looks
approximately as in Fig 3. On Linux segmentation is not used;
the kernel sets up two user segments USER_CS and USER_DS
both starting at address 0x0 with a limit at 0xffffffff. They
memory range covered by these two segments is, thus, equal
to each other. This sets up a so-called flat memory model, in
which code and data can be addressed interchangeably. The
flat memory model is the preferred memory layout for most
modern operating systems. Incidentally popular compilers for
Linux, such as gcc and clang, assume a flat memory model.

C. Loading text in a separate segment

The main idea behind protection we propose is quite novel:
load text into an address outside the limits of the user data
segment, but inside a new code segment. When a read is
performed on an address outside the user data segment, the
processor will throw a protection fault, while allowing an
instruction fetch from that same address.

A problem with splitting the memory in two segments is that
compilers and linkers for Linux assume a flat memory model.
When the Kernel loads the code, it assumes one contiguous
piece of memory, where the access policy is determined by
the page handler. Thus care should be given to load the correct
section at the right memory address. Also, it would be desirable
to not have to tinker too much with the layout of the programs.
Ideally, one would want an existing binary should run with the
proposed protection without having to be recompiled.

A very intuitive solution is to create two overlapping seg-
ments with starting at address 0x0, where the DATA-segment
covers a subset of the CODE-segment but its limit is lower
than that of the CODE-segment. This creates a section at the
top of the address space that is execute-only. When using this
approach, all executable code that should be non-readable is
loaded in that particular section.

This approach was the initial solution tried while developing
the proof-of-concept implementation. There is, however, a
problem with this approach, namely shared libraries. Shared
libraries are loaded into a contiguous piece of memory starting
at an address chosen by the dynamic linker. This would not
be a problem, since they can be forced to be loaded in the
execute-only section, however, the static data section of the
shared libraries are loaded into that same piece of memory.
These data sections need to be readable for the libraries to
work. While moving these data sections is possible, it is very
cumbersome; all references to these memory addresses have
to be updated by means of instrumentation. Also, relocating
code in Position-Dependent-Executables is not trivial.

Another solution is to split the available virtual address
space into two disjoint segments that mirror each other, with
the exception that execute-only sections are nulled / freed in
the DATA segment. Instruction fetches would be loaded form
the CODE-segment, while memory loads would be loaded
form the DATA-segment, giving the illusion of a flat address
space. The obvious downside is that the available address
space is cut in half. The upside is that a very generic defense
mechanism can be implemented; when marking a sections as
executable simply load it into the CODE-segment. This makes
it possible to use existing memory protection infrastructure,
such as mprotect.

With such an approach one could simply say that areas
with the executable flag set are loaded into the CODE-segment
and areas marked with the read/write flag are loaded into the
DATA-segment. If an area is both executable and readable
(and/or writable), it is loaded into both segments. By simply
marking executable code sections in the binary as execute-only,
the proper protection would be guaranteed.

To achieve such an implementation there are thus two tasks
at hand:

4

1) Implement Execute-only memory primitive on Intel
x86.

2) Mark executable code sections non-readable, so that the
execute-only primitive is used.

D. Allowing legitimate text reads

Something that has to be taken into consideration when
implementing the proposed protections, is that there are some
legitimate reasons to read executable code. For example in the
special case when the stack is made executable, the proposed
defense should not take effect of the stack. Also there are
some headers located in the text section of shared libraries
that need to be readable [8]. The problem can be solved by
recompiling the libraries with a modified linker script. Another
approach would be to perform some fine-grained access pattern
recognition of these headers.

V. IMPLEMENTATION

For implementing non-readable code, there are two different
types of executables that have to be consider:

1) Position-Dependent-Executables (PDE). Code that
has to loaded at a fixed address in memory. For PDE-
executables it is hard to relocate parts of the program.
The implementation for this scenario (see Sec. VI) uses
the mirroring approach discussed earlier. This approach
gives the process the illusion of a flat memory-model,
while it actually is segmented.

2) Position-Independent-Executables (PIE). Programs
that are composed entirely of Position-Independent-
Code, which enables them to be executed regardless
of where in memory it is loaded. PIE is often a
requirement for ASLR [10]. The implementation for
this scenario is presented in Sec. VII.

Both proof-of-concept defenses are implemented on x86
Linux. The implementation for both approaches consists of
two parts: a kernel module and a user-space library.

For the defense designs presented in the following sections
we have a few requirements that we want to adhere to:

1) Enable on a per-process basis. The defense mech-
anism presented here is of more interest to some
applications, while other applications such as games,
would relatively seldom benefit from such a defense
mechanism.

2) No kernel recompilation. The defense should be pos-
sible to set up on an existing system with no down
time.

3) Do as much work as possible in user-space. This
follows naturally from the previous point. By using a
user-space shared library to perform the address-space
layout modifications, fewer lines of code are executed
in kernel mode. Fewer modifications to the kernel
greatly reduces the risk of accidentally introducing new
exploits.

VI. IMPLEMENTATION: SHADOW ADDRESS-SPACE (SAS)

In this implementation the available userland address space
of 3 Gb is split into two segments of 1.5 Gb as per Fig. 4. The
two segments are basically mirrors of each other; if a memory
range is reserved in one segment, the same range is reserved in
the other. The difference between the two segments lies in that
executable mappings are only available in the code-segment,
while the data is only loaded in the data segment.

Thanks to segmentation, a code fetch at address 0x0 will be
offset by the base of the code segment. In this implementation
the base of the code-segment is 0x60000000, which places it
at an offset of 1.5 Gb from the start of the address space. By
mirroring the memory layout across the segments, the SAS
approach allows moving code sections in memory without
changing the procedure pointers. In short the virtual address
(before segmentation translation has been performed) remains
unchanged, while the code is actually relocated. Because the
virtual address stays the same, the pointers to the procedures do
not need to be re-calculated. This reason makes this approach
suitable for position dependent executables.

A. Address-space layout modifications

To achieve a mirroring of the address space, we have to be
ensure that nothing is loaded at an address above the split (this
threshold will hereafter be called SHADOW_CS_START).
There are a few areas that need to be moved below this
threshold:

1) Shared libraries. Usually the shared libraries are
loaded at the top of the address space, just below the
stack. By starting the executable in compatibility mode
(setarch i386 -L) the old Linux address-space layout is
used. This makes sure that dynamic libraries are loaded
below SHADOW_CS_START.
Alternatively, the prelink tool may be used to pre-link
dynamic libraries at a specified address. The downside
to pre-linking is that it disables ASLR for the pre-
linked library. However, by regularly pre-linking the
used libraries at a random address, the benefits of ASLR
can be kept. Another approach of combining ASLR and
prelink is discussed in [11].

2) VDSO/ VVAR. The VDSO/ VVAR segments are used
for calling kernel space procedures in user space
(e.g. system calls). Compatibility mode also moves
the VDSO (virtual dynamically linked shared objects)
section below SHADOW_CS_START.

3) The Stack. The stack is located at the top of the address
space in Linux. When an executable is loaded, the stack
pointer is initialized at the top of the address space.
Environmental variables and command-line arguments
are placed on the stack. By copying the environmental
variables and command-line arguments to a new loca-
tion and pointing the stack pointer to the new top of
the stack, the stack can be moved freely. To reduce the
complexity of moving the stack, it is moved before libc
has been fully initialized. By intercepting the function
__libc_start_main using LD_PRELOAD, the address

5

Fig. 4: Shadow address-space layout. The layout of the
CODE and DATA segments are mirrors of each other. Only
executable areas are mapped in the CODE segment, while the
corresponding area in the DATA segment is unmapped.

...

stack

libc .text

.data

.text code address: 0x0

CODE Segment
(CS)

stack

libc .data

.data

.text (NULLED) data address: 0x0

DATA Segment
(DS)

...

location of the environmental variables can be obtained,
and the stack can thus be moved.

B. Intercepting system calls
For achieving our XnR policy, all executable memory-

mappings need to be placed at a mirrored area in the code
segment. The mirroring of code mappings is achieved by
intercepting the mmap2 system-call using a kernel module.
If the mapping has the flag PROT_EXEC it is mapped at the
desired address plus SHADOW_CS_START.

When performing a code mapping, we have to make sure
to return an address with the SHADOW_CS_START offset
removed, so that the correct location will be accessed after
segmentation address translation. Also, we have to ensure that
mappings with the MAP_FIXED return an error if the address
to be mapped at exceeds SHADOW_CS_START.

Furthermore, if mmap is called with the address 0x0, the
Operating System decides where to put the mapping. Thus it
also needs to be ensured that such a mapping is never placed
above the threshold.

Besides mmap, the mprotect system-call may make
memory areas executable. When mprotect is called with
the PROT_EXEC flag, the corresponding area has to be
re-mapped with an offset of SHADOW_CS_START. Like-
wise, when an executable area is made non-executable using
mprotect, the area has to be moved with an offset of
negative SHADOW_CS_START.

If an area is protected using both PROT_READ and
PROT_EXEC, the area has to be mapped twice: once in the

if MAP_FIXED and addr > SHADOW_CS_START then
return Error;

end
if PROT_EXEC then

ret = mmap(addr + SHADOW_CS_START, . . .);
ret -= SHADOW_CS_START;

else
ret = mmap(addr, . . .);

end
return ret;

Algorithm 1: Intercepting mmap. When a mapping has the
executable flag set, it is loaded in the upper part of the address
space.

if PROT_EXEC and not marked as PROT_EXEC then
map area to addr + SHADOW_CS_START;

end
if PROT_READ and not marked as PROT_READ then

map area to addr;
end
return ret;

Algorithm 2: Intercepting mprotect. When an area is made
executable, it is mapped in the shadow address space.

data segment and once in the code segment. This will of course
add a certain overhead, since two calls to mmap are required.

Furthremore, for a complete implementation, other mapping
system calls such as munmap and mremap should be modified
to follow the same guidelines as mmap. For munmap it is not
known if a call un-maps an executable area, or a data area.
However, since we use a mirrored address space, it should be
safe to un-map the address range in both the data and the code
section.

C. Specific obstacles
One obstacle for this implementation, is that a user process

cannot alter its CS register (this would allow a process to enter
ring-0), thus the register has to be set from the kernel. Using
a kernel module a proc-file (called /proc/enable_xnr_cs) is
created, which, when opened by a process, modifies the CS
register of the calling process. A cleaner solution would be to
set the correct register value on load-time, however, since the
address-space layout of the program is altered using a user-
space library, the protection can only be enabled after all such
modifications have been performed.

D. Performance impact
For each mmap system-call some overhead is added by this

approach. However, the added overhead is quite minimal, since
it consist of a simple if -statement, which only adds an offset
to a number.

However, with this approach some data has to be mapped
two times, namely if it has to be both executable and read-
able. There is also a very particular scenario in which this
approach would affect performance significantly. When using

6

Fig. 5: Layout where the DATA segment is a subset of the
CODE segment. This makes a portion of the address-space
executable but non-readable.

...

dynlib .text

.text

Code Segment (CS)

stack

dynlib .data

heap (malloc

.bss

.data

Code Segment (CS)
Data Segment (DS)

...

mprotect to alternate between setting something readable
and execute-only. However, this scenario seems very unlikely.

VII. IMPLEMENTATION: PARTIALLY DISJOINT SEGMENTS
(PDS)

In this design the address space is modified to look as in
Fig. 5. By setting the limit of the data-segment below the code-
segment, an XnR-area is created at the top of the user-space.
By placing all code in this XnR area, we ensure that the code
is non-readable. To achieve a secure defence against ROP, all
executable areas have to be in the XnR section.

A. Address-space layout modifications
To get a program running using this modified memory-

layout we have to make sure that nothing that needs to be
readable is mapped in the XnR area. As is the case for the SAS-
approach, the stack has to be re-located. By placing the stack at
a random location around address 0x50000000, it has enough
room to grow, while not being in the way for other areas.
Here, again, the VDSO/ VVAR areas have to be readable,
thus starting the program in compatibility mode works fine.
An upside of the PDS approach is that areas mapped below the
XnR-section can still be executable without doing mirroring.
Compared to the SAS-approach this makes things like moving
the VDSO easier.

By moving the .text segment into the XnR section the pro-
gram code becomes non-readable. This relocation is achieved
by linking an executable with a linker script, which places the
.text in the XnR section.

B. Relocating shared libraries
Of course, the above mentioned address-space modifications

only ensure XnR for the program text. As stated earlier, the

main way of exploiting ROP is by using procedures from
libc. The executable parts of the shared libraries, thus has to
be relocated. Achieving this task is not as trivial as it seems.
When the dynamic loader loads a library, its mappings are
placed in a contiguous range. That means that the .data and
.text are placed next to each other in memory. By instrumenting
the calls to procedures in libraries, the execution flow can be
redirected to another address, thus making it possible to move
procedures.

For achieving this instrumentation, the Dyninst library [12]
is used. Dyninst allows us to modify the execution of a
program while it is running. By redirecting calls from the
Procedure Linkage Table (PLT), we can redirect library calls
to any desired location. By mapping a copy of the code into
the XnR section, while simultaneously unmapping the code
from its standard location, the code is XnR protected. Since
x86 does not have relative addressing instructions for data, all
references to data from the code should still be correct after
relocation.

If a program is linked statically this instrumentation is not
required, since the library code will be moved into the .text
section of the ELF-binary when linking the program.

C. Performance impact
The approach taken for this implementation should have

no run-time overhead during normal operation. When all re-
locations have been performed the program runs as usual. Due
to the fact that dynamic library calls have to be instrumented,
a certain overhead will incur from this instrumentation.

VIII. LIMITATIONS

One drawback of these implementations is that the they
limit the size of the address space. For the shadow address-
space this limitation is more apparent than for the disjoint
segment approach. For the disjoint segment approach the
XNR_THRESHOLD could be adjusted on a per-process basis,
keeping a larger size of the address space usable. Please note
that the SAS-approach does not increase RAM usage, since
pages that are mapped twice, only have to reside in physical
memory once.

Furthermore, there is the problem of self-modifying
programs. Self-modifying programs need code that is
both writable and executable. In the case of the SAS-
implementation the modifiable code would be loaded twice:
once in the data segment, once in the code segment, to make it
both writable and executable. When data in the data segment is
modified the changes have to be mirrored in the code segment.
This could be done using some kind of instrumentation. It has,
however, been decided to not support self-modifying programs.
Mainly, because they are not that common and, additionally,
they make it possible to perform standard buffer-overflow
attacks (since W ⊕X has to be disabled).

Also, this defense only applies to memory-disclosure at-
tacks. If an address of a function can be obtained by an
attacker, using for example a leaking pointer, a gadget can still
be assembled. However, since this approach only reveals the
start location of procedures, construction of small, fine-grained

7

gadgets (e.g. POP-return) is not possible, thus the range of
attacks are far more limited.

Finally, this implementation is only possible on 32-bits
x86 architecture. In 2006 Intel decided to drop support for
segmentation for their current line of processors. Because of
this reason, the defense mechanisms presented in this paper
are not available on x86-64.

IX. RELATED WORK

A comparable defense against JIT-ROP has been presented
by Backes & al [8]. Their approach is to emulate XnR by
marking pages containing code as XnR. The marking is done
by intercepting page faults and keeping a cache of which
pages should be execute-only. By marking them absent in the
MMU, each time such a page is accessed, the MMU generates
an interrupt. This interrupt is then caught, whereafter it is
decided if the access is legitimate or not. Backes & al claim
a overhead of merely 2.2% for Linux. They achieve this low
overhead manly due to the fact that functions calling each
other reside close to each other in memory (thus likely on the
same page). If this approach were used in combination with
a more fine-grained ASLR chances are that the performance
would be much worse. By moving procedures to random areas
in memory it is likely that procedures within a library are
scattered across different pages. Furthermore, the defense by
Backet & al does not protect against access to the currently
available pages, which in their case is two or more for the
sake of performance. Arguably, it is possible that two pages
(or about 8 KB) could contain some possible gadgets, thus
making the defense vulnerable.

Another approach, besides ASLR, that tries to mitigate
ROP attacks is presented by Barrantes in [13]. They use
an emulated randomized instruction set to make it harder to
scan the memory for known gadgets. Naturally there is some
performance overhead involved with emulating an instruction
set.

A diversification defense that mitigates ROP gadget chains
by means of altering the execution path is presented in [14]. By
having two differently diversified versions (using fine-grained
ASLR) of a program loaded in memory, the execution path
can be altered. By, figuratively, constantly flipping a coin on
which version of the code to use, assembled ROP gadget chains
cannot execute reliably.

Approaches such as Redactor [15] combine different tech-
niques to protect against ROP. First, they achieve execute-only
memory by using virtualization capabilities on x86. Secondly,
they implement code diversification on compile-time. Finally,
they hide code pointers on compilation using jmp trampolines,
making it hard to find the actual address of procedures. The
overhead incurred by Redactor is 6.4%.

A conceptually very similar implementation to the SAS-
implementation presented in this paper is used by PaX [16].
Despite their goal being to enable non-executable data, rather
than XnR, their implementation fully supports XnR by mark-
ing a segment execute-only. The overhead claimed by PaX

SEGMEXEC is about 0.7% 3.
Likewise, Red Hat’s Exec Shield contains a security measure

to emulate W⊕X using segmentation that is very similar to the
PDS-approach [17]. By setting the limit of the code segment
below the limit of the data segment, an area is created that
contains data that will be non-executable. Exec Shield requires
all program code to be loaded below this limit. The downside
to this approach, as is with the PDS-approach presented in
this paper, is that programs have to be re-linked if they are not
position independent.

X. CONCLUSION

In this paper we have demonstrated the need for non-
readable code. If code is readable, it is possible to assemble
ROP gadget chains by making use of a buffer overflow. By
scanning the memory using a memory disclosure exploit, such
chains can be assembled just-in-time for a target, without
knowing exactly where procedures are loaded in memory. If
executable code is made non-readable, scanning the memory
for gadgets becomes impossible. Thus, in combination with
other diversification defenses, such asASLR, non-readable code
constitutes a strong defense against JIT-ROP.

By modifying the address space of a process, it is possible to
achieve an efficient implementation of XnR using segmentation
memory-translation hardware. We have presented two such
defense-approaches: one for all executables, and one exclu-
sively for position independent executables.

The first approach achieves XnR by using separate segments
for code, and data, while giving the illusion of a flat memory-
model to the process at the cost of half of the address-space.

The second approach limits the data-segment, thus creating
an XnR section at the top of the address space. The benefit of
this approach is that the full address-space can still be used.

XI. FUTURE WORK

Despite segmentation being deprecated, it should still be
possible to implement a defense similar in nature to the PDS
implementation on new Intel hardware. By using new memory
bounds-checking instructions (MPX) introduced by Intel it
is possible to check that a memory access is within certain
bounds. A similar split between code and data as in the PDS
implementation could be made, thus making a portion of the
address space executable, but not readable. By inserting an
MPX call before every memory read, it possible to specify
an upper bound for all memory read instructions, effectively
creating an XnR section.

The downside to this approach is the overhead. For each
memory read, an extra instruction has to be inserted. Bench-
marks for MPX show that there is an enormous overhead.
However, when looking at the generated code when enabling
MPX bounds-checking in GCC, it is obvious that a lot of
overhead is due to managing the bounds registers. Since the ap-
proach presented here only requires one bound-check, it could
be safe to assume that the performance should be reasonable
(why else would Intel introduce such an instruction?).

3This claim can be found here: https://wiki.ubuntu.com/PaXvExecShield.
However no experimental data is available.

8

REFERENCES

[1] S. Krahmer, “x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique,” 2005.

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[3] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security.
ACM, 2004, pp. 298–307.

[4] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino, “Marlin: A
fine grained randomization approach to defend against rop attacks,”
in Network and System Security. Springer, 2013, pp. 293–306.

[5] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained mem-
ory randomization practical by allowing code sharing,” in USENIX
Security Symposium, 2014.

[6] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Security and Privacy
(SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 574–588.

[7] P. S. Ramu Ramakesavan, Dan Zimmerman, “Intel memory protection
extensions (intel mpx) enabling guide,” Apr. 2015. [Online]. Available:
https://software.intel.com/sites/default/files/managed/9d/f6/Intel_MPX_EnablingGuide.pdf

[8] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, pp. 1342–
1353.

[9] A. S. Tanenbaum and H. Bos, Modern operating systems. Prentice
Hall Press, 2014.

[10] U. Drepper, “Security enhancements in redhat enterprise linux (beside
selinux),” Retrieved November, vol. 15, p. 2009, 2005.

[11] H. Yoon, C. Min, and Y. I. Eom, “Dynamic-prelink: An enhanced
prelinking mechanism without modifying shared libraries.”

[12] “Dyninst: An application program interface (api) for runtime code
generation,” Online, http://www. dyninst. org.

[13] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi, “Randomized instruction set emulation to disrupt binary code
injection attacks,” in Proceedings of the 10th ACM conference on
Computer and communications security. ACM, 2003, pp. 281–289.

[14] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose, “Iso-
meron: Code randomization resilient to (just-in-time) return-oriented
programming,” Proc. 22nd Network and Distributed Systems Security
Sym.(NDSS), 2015.

[15] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in IEEE Symposium on Security and
Privacy, S&P, vol. 15, 2015.

[16] (2006, Oct.) Pax segmexec. https://pax.grsecurity.net/docs/segmexec.txt.
[17] A. van de Ven, “New security enhancements in red hat enterprise linux

v. 3, update 3,” Raleigh, North Carolina, USA: Red Hat, 2004.

